Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 604
Filter
1.
Invest Ophthalmol Vis Sci ; 65(1): 37, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38252525

ABSTRACT

Purpose: Previously we demonstrated that the secreted Ly-6/uPAR related protein 1 (SLURP1), abundantly expressed in the corneal epithelium (CE) and secreted into the tear fluid, serves as an antiangiogenic molecule. Here we describe the Slurp1-null (Slurp1X-/-) mouse corneal response to silver nitrate (AgNO3) cautery. Methods: Five days after AgNO3 cautery, we compared the wild-type (WT) and Slurp1X-/- mouse (1) corneal neovascularization (CNV) and immune cell influx by whole-mount immunofluorescent staining for CD31 and CD45, (2) macrophage and neutrophil infiltration by flow cytometry, and (3) gene expression by quantitative RT-PCR. Quantitative RT-PCR, immunofluorescent staining, and immunoblots were employed to evaluate the expression, phosphorylation status, and subcellular localization of NF-κB pathway components. Results: Unlike the WT, the Slurp1X-/- corneas displayed denser CNV in response to AgNO3 cautery, with more infiltrating macrophages and neutrophils and greater upregulation of the transcripts encoding VEGFA, MMP2, IL-1b, and vimentin. At 2, 7, and 10 days after AgNO3 cautery, Slurp1 expression was significantly downregulated in the WT corneas. Compared with the WT, naive Slurp1X-/- CE displayed increased phosphorylation of IKK(a/b), elevated phosphorylation of IκB with decreased amounts of total IκB, and higher phosphorylation of NF-κB, suggesting that NF-κB signaling is constitutively active in naive Slurp1X-/- corneas. Conclusions: Enhanced angiogenic inflammation in AgNO3 cauterized Slurp1X-/- corneas and constitutively active status of NF-κB signaling in the absence of Slurp1 suggest that Slurp1 modulates corneal angiogenic inflammation via NF-κB signaling.


Subject(s)
Corneal Neovascularization , Keratitis , Signal Transduction , Animals , Mice , Cornea , Corneal Neovascularization/metabolism , Corneal Neovascularization/pathology , Inflammation , Keratitis/metabolism , NF-kappa B
2.
Ocul Surf ; 32: 13-25, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38191093

ABSTRACT

PURPOSE: Corneal fibrosis and neovascularization (CNV) after ocular trauma impairs vision. This study tested therapeutic potential of tissue-targeted adeno-associated virus5 (AAV5) mediated decorin (DCN) and pigment epithelium-derived factor (PEDF) combination genes in vivo. METHODS: Corneal fibrosis and CNV were induced in New Zealand White rabbits via chemical trauma. Gene therapy in stroma was delivered 30-min after chemical-trauma via topical AAV5-DCN and AAV5-PEDF application using a cloning cylinder. Clinical eye examinations and multimodal imaging in live rabbits were performed periodically and corneal tissues were collected 9-day and 15-day post euthanasia. Histological, cellular, and molecular and apoptosis assays were used for efficacy, tolerability, and mechanistic studies. RESULTS: The AAV5-DCN and AAV5-PEDF combination gene therapy significantly reduced corneal fibrosis (p < 0.01 or p < 0.001) and CNV (p < 0.001) in therapy-given (chemical-trauma and AAV5-DCN + AAV5-PEDF) rabbit eyes compared to the no-therapy given eyes (chemical-trauma and AAV5-naked vector). Histopathological analyses demonstrated significantly reduced fibrotic α-smooth muscle actin and endothelial lectin expression in therapy-given corneas compared to no-therapy corneas on day-9 (p < 0.001) and day-15 (p < 0.001). Further, therapy-given corneas showed significantly increased Fas-ligand mRNA levels (p < 0.001) and apoptotic cell death in neovessels (p < 0.001) compared to no-therapy corneas. AAV5 delivered 2.69 × 107 copies of DCN and 2.31 × 107 copies of PEDF genes per µg of DNA. AAV5 vector and delivered DCN and PEDF genes found tolerable to the rabbit eyes and caused no significant toxicity to the cornea. CONCLUSION: The combination AAV5-DCN and AAV5-PEDF topical gene therapy effectively reduces corneal fibrosis and CNV with high tolerability in vivo in rabbits. Additional studies are warranted.


Subject(s)
Corneal Neovascularization , Dependovirus , Disease Models, Animal , Eye Proteins , Fibrosis , Genetic Therapy , Nerve Growth Factors , Serpins , Animals , Rabbits , Genetic Therapy/methods , Fibrosis/therapy , Corneal Neovascularization/therapy , Corneal Neovascularization/genetics , Corneal Neovascularization/pathology , Corneal Neovascularization/metabolism , Dependovirus/genetics , Eye Proteins/genetics , Eye Proteins/metabolism , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Serpins/genetics , Serpins/metabolism , Decorin/genetics , Decorin/metabolism , Cornea/pathology , Cornea/metabolism , Genetic Vectors
3.
Acta Pharmacol Sin ; 45(1): 166-179, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37605050

ABSTRACT

Dry eye disease (DED) is a prevalent ocular disorder with a multifactorial etiology. The pre-angiogenic and pre-inflammatory milieu of the ocular surface plays a critical role in its pathogenesis. DZ2002 is a reversible type III S-adenosyl-L-homocysteine hydrolase (SAHH) inhibitor, which has shown excellent anti-inflammatory and immunosuppressive activities in vivo and in vitro. In this study, we evaluated the therapeutic potential of DZ2002 in rodent models of DED. SCOP-induced dry eye models were established in female rats and mice, while BAC-induced dry eye model was established in female rats. DZ2002 was administered as eye drops (0.25%, 1%) four times daily (20 µL per eye) for 7 or 14 consecutive days. We showed that topical application of DZ2002 concentration-dependently reduced corneal neovascularization and corneal opacity, as well as alleviated conjunctival irritation in both DED models. Furthermore, we observed that DZ2002 treatment decreased the expression of genes associated with angiogenesis and the levels of inflammation in the cornea and conjunctiva. Moreover, DZ2002 treatment in the BAC-induced DED model abolished the activation of the STAT3-PI3K-Akt-NF-κB pathways in corneal tissues. We also found that DZ2002 significantly inhibited the proliferation, migration, and tube formation of human umbilical endothelial cells (HUVECs) while downregulating the activation of the STAT3-PI3K-Akt-NF-κB pathway. These results suggest that DZ2002 exerts a therapeutic effect on corneal angiogenesis in DED, potentially by preventing the upregulation of the STAT3-PI3K-Akt-NF-κB pathways. Collectively, DZ2002 is a promising candidate for ophthalmic therapy, particularly in treating DED.


Subject(s)
Corneal Neovascularization , Dry Eye Syndromes , Rats , Humans , Mice , Animals , Female , Corneal Neovascularization/drug therapy , Corneal Neovascularization/metabolism , Corneal Neovascularization/pathology , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Rodentia/metabolism , Endothelial Cells/metabolism , Angiogenesis , Inflammation/drug therapy , Dry Eye Syndromes/drug therapy , Dry Eye Syndromes/chemically induced , STAT3 Transcription Factor/metabolism
4.
Exp Eye Res ; 236: 109671, 2023 11.
Article in English | MEDLINE | ID: mdl-37776992

ABSTRACT

The sight-threatening sulfur mustard (SM) induced ocular injury presents specific symptoms in each clinical stage. The acute injury develops in all exposed eyes and may heal or deteriorate into chronic late pathology. Early detection of eyes at risk of developing late pathology may assist in providing unique monitoring and specific treatments only to relevant cases. In this study, we evaluated a machine-learning (ML) model for predicting the development of SM-induced late pathology based on clinical data of the acute phase in the rabbit model. Clinical data from 166 rabbit eyes exposed to SM vapor was used retrospectively. The data included a comprehensive clinical evaluation of the cornea, eyelids and conjunctiva using a semi-quantitative clinical score. A random forest classifier ML model, was trained to predict the development of corneal neovascularization four weeks post-ocular exposure to SM vapor using clinical scores recorded three weeks earlier. The overall accuracy in predicting the clinical outcome of SM-induced ocular injury was 73%. The accuracy in identifying eyes at risk of developing corneal neovascularization and future healed eyes was 75% and 59%, respectively. The most important parameters for accurate prediction were conjunctival secretion and corneal opacity at 1w and corneal erosions at 72 h post-exposure. Predicting the clinical outcome of SM-induced ocular injury based on the acute injury parameters using ML is demonstrated for the first time. Although the prediction accuracy was limited, probably due to the small dataset, it pointed out towards various parameters during the acute injury that are important for predicting SM-induced late pathology and revealing possible pathological mechanisms.


Subject(s)
Chemical Warfare Agents , Corneal Neovascularization , Eye Injuries , Mustard Gas , Animals , Rabbits , Mustard Gas/toxicity , Corneal Neovascularization/chemically induced , Corneal Neovascularization/diagnosis , Corneal Neovascularization/pathology , Chemical Warfare Agents/toxicity , Retrospective Studies , Cornea/pathology , Eye Injuries/chemically induced , Eye Injuries/diagnosis , Eye Injuries/pathology
5.
Adv Drug Deliv Rev ; 201: 115084, 2023 10.
Article in English | MEDLINE | ID: mdl-37689278

ABSTRACT

Ocular surface neovascularization and its resulting pathological changes significantly alter corneal refraction and obstruct the light path to the retina, and hence is a major cause of vision loss. Various factors such as infection, irritation, trauma, dry eye, and ocular surface surgery trigger neovascularization via angiogenesis and lymphangiogenesis dependent on VEGF-related and alternative mechanisms. Recent advances in antiangiogenic drugs, nanotechnology, gene therapy, surgical equipment and techniques, animal models, and drug delivery strategies have provided a range of novel therapeutic options for the treatment of ocular surface neovascularization. In this review article, we comprehensively discuss the etiology and mechanisms of corneal neovascularization and other types of ocular surface neovascularization, as well as emerging animal models and drug delivery strategies that facilitate its management.


Subject(s)
Corneal Neovascularization , Molecular Medicine , Animals , Neovascularization, Pathologic/drug therapy , Corneal Neovascularization/drug therapy , Corneal Neovascularization/pathology , Retina/pathology , Angiogenesis Inhibitors/therapeutic use
6.
J Vis Exp ; (196)2023 06 30.
Article in English | MEDLINE | ID: mdl-37458425

ABSTRACT

Corneal neovascularization (CoNV), a pathological form of angiogenesis, involves the growth of blood and lymph vessels into the avascular cornea from the limbus and adversely affects transparency and vision. Alkali burn is one of the most common forms of ocular trauma that leads to CoNV. In this protocol, CoNV is experimentally induced using sodium hydroxide solution in a controlled manner to ensure reproducibility. The alkali burn model is useful for understanding the pathology of CoNV and can be extended to study angiogenesis in general because of the avascularity, transparency, and accessibility of the cornea. In this work, CoNV was analyzed by direct examination under a dissecting microscope and by immunostaining flat-mount corneas using anti-CD31 mAb. Lymphangiogenesis was detected on flat-mount corneas by immunostaining using anti-LYVE-1 mAb. Corneal edema was visualized and quantified using optical coherence tomography (OCT). In summary, this model will help to advance existing neovascularization assays and discover new treatment strategies for pathologic ocular and extraocular angiogenesis.


Subject(s)
Burns, Chemical , Corneal Diseases , Corneal Neovascularization , Mice , Animals , Corneal Neovascularization/etiology , Corneal Neovascularization/pathology , Corneal Neovascularization/therapy , Burns, Chemical/complications , Burns, Chemical/pathology , Reproducibility of Results , Cornea/pathology , Neovascularization, Pathologic/pathology , Corneal Diseases/pathology , Disease Models, Animal
7.
Cell Signal ; 109: 110784, 2023 09.
Article in English | MEDLINE | ID: mdl-37356601

ABSTRACT

BACKGROUND: Corneal neovascularization (CNV) is a symptom of herpes simplex keratitis (HSK), which can result in blindness. The corneal angiogenesis brought on by herpes simplex virus type 1 (HSV-1) is strongly affected by vascular endothelial growth factor A (VEGFA). The N6-methyladenosine (m6A) modification catalyzed by methyltransferase-like 3 (METTL3) is a crucial epigenetic regulatory process for angiogenic properties. However, the roles of METTL3 and m6A in HSK-induced CNV remain unknown. Here, we investigated these roles in vitro and in vivo. METHODS: A PCR array in HSV-1-infected human umbilical vein endothelial cells (HUVECs) was used to screen for METTL3 among the epitranscriptomic genes. Tube formation and scratch assays were conducted to investigate cell migration capacity. The global mRNA m6A abundance was evaluated using a dot blot assay. Gene expression was assessed by RT-qPCR, western blotting, and fluorescence immunostaining. In addition, bioinformatic analysis was conducted to identify the downstream molecules of METTL3 in HUVECs. METTL3 knockdown and STM2457 treatment clarified the specific underlying molecular mechanisms affecting HSV-1-induced angiogenesis in vitro. An acute HSK mouse model was established to examine the effects of METTL3 knockdown or inhibition using STM2457 on pathological angiogenic development in vivo. RESULTS: METTL3 was highly upregulated in HSV-1-infected HUVECs and led to increased m6A levels. METTL3 knockdown or inhibition by STM2457 further reduced m6A levels and VEGFA expression and impaired migration and tube formation capacity in HUVECs after HSV-1 infection. Mechanistically, METTL3 regulated LRP6 expression through post-transcriptional mRNA modification in an m6A-dependent manner, increasing its stability, upregulating VEGFA expression, and promoting angiogenesis in HSV-1-infected HUVECs. Furthermore, METTL3 knockdown or inhibition by STM2457 reduced CNV in vivo. CONCLUSION: Our findings revealed that METTL3 promotes pathological angiogenesis through canonical Wnt and VEGF signaling in vitro and in vivo, providing potential pharmacological targets for preventing the progression of CNV in HSK.


Subject(s)
Corneal Neovascularization , Herpesvirus 1, Human , Keratitis, Herpetic , Animals , Mice , Humans , Corneal Neovascularization/genetics , Corneal Neovascularization/pathology , Herpesvirus 1, Human/metabolism , Vascular Endothelial Growth Factor A/metabolism , Wnt Signaling Pathway , Keratitis, Herpetic/pathology , Neovascularization, Pathologic , Human Umbilical Vein Endothelial Cells/metabolism , RNA, Messenger/genetics , Methyltransferases/genetics , Methyltransferases/metabolism
8.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166708, 2023 08.
Article in English | MEDLINE | ID: mdl-37019244

ABSTRACT

BACKGROUND: Corneal neovascularization (CNV) can be caused by chemical burns. Macrophages are involved in angiogenesis and lymphangiogenesis during CNV. The aim of this study was to investigate whether Wilms' tumor 1-associated protein (WTAP) is involved in macrophage recruitment and VEGF secretion via N6-methyladenosine (m6A) modification. METHODS: A CNV mouse model was established by corneal alkali burn. Tumor necrosis factor alpha (TNF-α) was used to stimulate vascular endothelial cells. m6A immunoprecipitation qPCR was used to determine the enrichment of m6A levels in mRNAs. The H3K9me3 enrichment in the promoter region of CC motif chemokine ligand 2 (CCL2) was detected by chromatin immunoprecipitation assay. The WTAP inhibition in vivo was performed using the adeno-associated virus. RESULTS: In the alkali burn corneal tissues, angiogenesis and lymphangiogenesis were promoted as CD31 and LYVE-1 expressions were elevated, and the number of macrophages as well as WTAP expression were increased. Under the TNF-α stimulation, WTAP promoted the recruitment of endothelial cells to macrophages by promoting CCL2 secretion. Mechanistically, WTAP affected the enrichment of H3K9me3 at the CCL2 promoter by regulating the m6A level of SUV39H1 mRNA. The in vivo experiment showed that VEGFA/C/D secretion of macrophages was reduced after WTAP interference. Mechanistically, WTAP regulated the translational efficiency of HIF-1α via m6A modification. CONCLUSION: WTAP affected macrophage recruitment to endothelial cells via regulation of H3K9me3-mediated CCL2 transcription. WTAP also affected macrophage secretion of VEGFA/C/D via m6A-mediated translation regulation of HIF-1α. Both pathways were involved in the WTAP regulation of angiogenesis and lymphangiogenesis during CNV.


Subject(s)
Burns, Chemical , Corneal Neovascularization , Mice , Animals , Corneal Neovascularization/genetics , Corneal Neovascularization/metabolism , Corneal Neovascularization/pathology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Endothelial Cells/metabolism , Burns, Chemical/metabolism , Burns, Chemical/pathology , Macrophages/metabolism
9.
Semin Ophthalmol ; 38(7): 670-678, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37058000

ABSTRACT

OBJECTIVE: To study the efficacy of Conbercept for the treatment of corneal neovascularization (NV) in a rabbit model. METHODS: NV was induced by placing sutures. Eight rabbits were used as a control. The other 136 rabbits were randomly divided into two equal groups, and 68 rabbits in each group were divided into four subgroups and given different treatments. Time-course photographs, histological examination, and enzyme-linked immunoassay ELISA analysis for vascular endothelial growth factor were performed at weeks 1, 2, and 3 after injection placement. RESULTS: At weeks 1, 2, and 3 after injection placement, there was less expression of corneal NV and VEGF in the conbercept-treated groups than in the saline-treated control groups and less corneal NV and VEGF were expressed in the early treatment group than in the late treatment group. At weeks 2 and 3 after injection, there were fewer corneal NV (length and area) in the early intrastromal injection group with conbercept than in the early subconjunctival injection group with conbercept and a smaller diameter of corneal NV than in the late intrastromal injection group treated with conbercept. Histological examination showed a smaller diameter of corneal NV in all eyes in conbercept-treated groups 1 w after injection than before injection. Treatment with subconjunctival injection with conbercept led to a larger diameter at weeks 2 and 3 than at week 1. CONCLUSIONS: Subconjunctival and intrastromal administrations of conbercept effectively inhibit corneal NV in rabbits, and the latter has the better effect. The effect is the best in the group with cornea intrastromal injection of conbercept 1 w after suture. Early administration of conbercept may successfully inhibit corneal NV in an animal model.


Subject(s)
Angiogenesis Inhibitors , Corneal Neovascularization , Animals , Humans , Rabbits , Bevacizumab/therapeutic use , Corneal Neovascularization/drug therapy , Corneal Neovascularization/metabolism , Corneal Neovascularization/pathology , Vascular Endothelial Growth Factor A , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Disease Models, Animal
10.
Int Ophthalmol ; 43(6): 2119-2128, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37012439

ABSTRACT

PURPOSE: To evaluate the efficacy of adalimumab (ADA) on inhibition of experimental corneal neovascularization (CNV) and compare the outcomes with bevacizumab (BEVA). METHODS: Twenty-four female Winstar rats (48 eyes) were used. Silver/Potassium Nitrate sticks were used for creating CNV. Forty-eight eyes of the rats were separated into 6 groups. The eyes which only NaCl was injected subconjunctivally (SC) formed Group-1. The eyes which CNV was created and NaCl, BEVA (2.5 mg/0.05 mL), ADA (2.5 mg/0.05 mL), respectively, were injected SC formed group-2, 3 and 4. The eyes which only BEVA and ADA, respectively, were injected SC formed group-5 and 6. Five days later the animals were sacrificed. Hematoxylin and eosin staining, Masson trichrome staining, Vascular endothelial growth factor (VEGF), and Platelet-derived growth factor (PDGF) antibodies were performed. RESULTS: Histochemical results showed that there was no histopathological finding in group-1, 5, and 6. Collagen fiber irregularity was observed in group-2 and there was a significant improvement in collagen fiber irregularity in group-3 and 4. Collagen fiber proliferation was higher in group-2 than in group-3 and 4. VEGF and PDGF stainings were not observed in group-1, 5, and 6. VEGF and PDGF stainings were observed in group-2 and significantly decreased in group-3 and 4 compared to group-2. ADA was found to be superior to BEVA in terms of decreasing VEGF staining. CONCLUSION: Both BEVA and ADA were effective in inhibiting CNV. Subconjunctival ADA seems to be more effective than BEVA in terms of inhibiting VEGF expression. Further experimental studies about ADA and BEVA are needed.


Subject(s)
Corneal Neovascularization , Vascular Endothelial Growth Factor A , Female , Rats , Animals , Vascular Endothelial Growth Factor A/metabolism , Angiogenesis Inhibitors/therapeutic use , Corneal Neovascularization/pathology , Adalimumab/pharmacology , Adalimumab/therapeutic use , Antibodies, Monoclonal, Humanized , Sodium Chloride/pharmacology , Sodium Chloride/therapeutic use , Conjunctiva/pathology , Bevacizumab/therapeutic use , Collagen/therapeutic use , Disease Models, Animal
11.
Cells ; 12(2)2023 01 14.
Article in English | MEDLINE | ID: mdl-36672254

ABSTRACT

Corneal lymphangiogenesis is one component of the neovascularization observed in several inflammatory pathologies of the cornea including dry eye disease and corneal graft rejection. Following injury, corneal (lymph)angiogenic privilege is impaired, allowing ingrowth of blood and lymphatic vessels into the previously avascular cornea. While the mechanisms underlying pathological corneal hemangiogenesis have been well described, knowledge of the lymphangiogenesis guidance mechanisms in the cornea is relatively scarce. Various signaling pathways are involved in lymphangiogenesis guidance in general, each influencing one or multiple stages of lymphatic vessel development. Most endogenous factors that guide corneal lymphatic vessel growth or regression act via the vascular endothelial growth factor C signaling pathway, a central regulator of lymphangiogenesis. Several exogenous factors have recently been repurposed and shown to regulate corneal lymphangiogenesis, uncovering unique signaling pathways not previously known to influence lymphatic vessel guidance. A strong understanding of the relevant lymphangiogenesis guidance mechanisms can facilitate the development of targeted anti-lymphangiogenic therapeutics for corneal pathologies. In this review, we examine the current knowledge of lymphatic guidance cues, their regulation of inflammatory states in the cornea, and recently discovered anti-lymphangiogenic therapeutic modalities.


Subject(s)
Corneal Neovascularization , Lymphatic Vessels , Humans , Lymphangiogenesis , Corneal Neovascularization/drug therapy , Corneal Neovascularization/metabolism , Corneal Neovascularization/pathology , Vascular Endothelial Growth Factor C/metabolism , Cornea/metabolism , Lymphatic Vessels/metabolism
12.
Mol Vis ; 29: 256-265, 2023.
Article in English | MEDLINE | ID: mdl-38222449

ABSTRACT

Purpose: The Algerbrush II has been widely used to induce corneal and limbal injuries in animal models. The extent of injury varies with the duration of exposure, pressure from the placement of the burr, and the size of the burr. However, no study has explored the correlation between the duration of exposure and the severity of injury in mouse model with corneal and limbal stem cell deficiency (LSCD) induced using the Algerbrush II. Therefore, this study aimed to evaluate the variations in the severity of corneal and limbal injury with different durations of the Algerbrush II application. Methods: The entire cornea and limbus of C57BL/6 mice were injured for 30-45 s, 60-75 s, 90-120 s, and 3-4 min. Photography and slit-lamp examination was performed on days 0, 2, 4, and 7, followed by hematoxylin & eosin, periodic acid-Schiff, and immunohistochemical staining. Statistical analysis was performed using one way ANOVA analysis. Results: A duration of 30-45 s of injury was found to be sufficient to induce superficial corneal and limbal epithelial debridement and re-epithelialization was completed in all eyes by day 7; however, clinical signs of LSCD were not observed in all mice. Increasing the exposure time to 90-120 s resulted in central 2+ corneal opacity with limbal and paracentral corneal neovascularization. All eyes injured for 3-4 min displayed clinical signs of LSCD, such as persistent epithelial defects on day 7 after the injury, central corneal neovascularization, and 2.2+ diffuse corneal opacity. Histological signs of LSCD, including goblet cell metaplasia and K13 expression on the corneal surface, were observed in all injured eyes. Conclusions: Our findings suggest that the duration of injury is an important factor influencing the severity of LSCD in a murine model of injury. A 1-mm rotating burr was found to be more effective for keratectomy and pigment release, whereas a 0.5-mm burr was more suitable for corneal epithelial debridement.


Subject(s)
Corneal Diseases , Corneal Neovascularization , Corneal Opacity , Epithelium, Corneal , Limbus Corneae , Animals , Mice , Epithelium, Corneal/pathology , Corneal Neovascularization/pathology , Disease Models, Animal , Mice, Inbred C57BL , Corneal Opacity/pathology , Corneal Diseases/metabolism
13.
BMC Ophthalmol ; 22(1): 517, 2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36585631

ABSTRACT

BACKGROUND: Infectious keratitis, a medical emergency with acute and rapid disease progression may lead to severe visual impairment and even blindness. Herein, an antimicrobial polypeptide from Crassostrea hongkongensis, named URP20, was evaluated for its therapeutic efficacy against keratitis caused by Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) infection in rats, respectively. METHODS: A needle was used to scratch the surface of the eyeballs of rats and infect them with S. aureus and E.coli to construct a keratitis model. The two models were treated by giving 100 µL 100 µM URP20 drops. Positive drugs for S. aureus and E. coli infection were cefazolin eye drops and tobramycin eye drops, respectively. For the curative effect, the formation of blood vessels in the fundus was observed by a slit lamp (the third day). At the end of the experiment, the condition of the injured eye was photographed by cobalt blue light using 5 µL of 1% sodium fluorescein. The pathological damage to corneal tissues was assessed using hematoxylin-eosin staining, and the expression level of vascular endothelial growth factor (VEGF) was detected by immunohistochemistry. RESULTS: URP20 alleviated the symptoms of corneal neovascularization as observed by slit lamp and cobalt blue lamp. The activity of S. aureus and E.coli is inhibited by URP20 to protect corneal epithelial cells and reduce corneal stromal bacterial invasion. It also prevented corneal thickening and inhibited neovascularization by reducing VEGF expression at the cornea. CONCLUSION: URP20 can effectively inhibit keratitis caused by E.coli as well as S. aureus in rats, as reflected by the inhibition of corneal neovascularization and the reduction in bacterial damage to the cornea.


Subject(s)
Corneal Neovascularization , Escherichia coli Infections , Keratitis , Staphylococcal Infections , Rats , Animals , Staphylococcus aureus , Corneal Neovascularization/pathology , Vascular Endothelial Growth Factor A , Escherichia coli , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Keratitis/drug therapy , Keratitis/prevention & control , Keratitis/microbiology , Cornea/pathology , Escherichia coli Infections/drug therapy , Escherichia coli Infections/pathology , Ophthalmic Solutions/pharmacology
14.
Int J Nanomedicine ; 17: 4911-4931, 2022.
Article in English | MEDLINE | ID: mdl-36267540

ABSTRACT

Corneal neovascularization (CNV) is an ocular pathological change that results from an imbalance between angiogenic factors and antiangiogenic factors as a result of various ocular insults, including infection, inflammation, hypoxia, trauma, corneal degeneration, and corneal transplantation. Current clinical strategies for the treatment of CNV include pharmacological treatment and surgical intervention. Despite some degree of success, the current treatment strategies are restricted by limited efficacy, adverse effects, and a short duration of action. Recently, gene-based antiangiogenic therapy has become an emerging strategy that has attracted considerable interest. However, potential complications with the use of viral vectors, such as potential genotoxicity resulting from long-term expression and nonspecific targeting, cannot be ignored. The use of ocular nanosystems (ONS) based on nanotechnology has emerged as a great advantage in ocular disease treatment during the last two decades. The potential functions of ONS range from nanocarriers, which deliver drugs and genes to target sites in the eye, to therapeutic agents themselves. Various preclinical studies conducted to date have demonstrated promising results of the use of ONS in the treatment of CNV. In this review, we provide an overview of CNV and its current therapeutic strategies and summarize the properties and applications of various ONS related to the treatment of CNV reported to date. Our goal is to provide a comprehensive review of these considerable advances in ONS in the field of CNV therapy over the past two decades to fill the gaps in previous related reports. Finally, we discuss existing challenges and future perspectives of the use of ONS in CNV therapy, with the goal of providing a theoretical contribution to facilitate future practical growth in the area.


Subject(s)
Corneal Neovascularization , Humans , Corneal Neovascularization/drug therapy , Corneal Neovascularization/pathology , Angiogenesis Inhibitors/therapeutic use , Genetic Therapy/methods , Genetic Vectors , Eye/pathology
15.
Mucosal Immunol ; 15(6): 1350-1362, 2022 06.
Article in English | MEDLINE | ID: mdl-35986099

ABSTRACT

Microbiota promotes or inhibits the pathogenesis of a range of immune-mediated disorders. Although recent studies have elucidated the role of gut microbiota in ocular disease, the effect of ocular microbiota remains unclear. Herein, we explored the role of ocular commensal bacteria in non-infectious corneal inflammation and angiogenesis in a mouse model of suture-induced corneal neovascularization. Results revealed that the ocular surface harbored a microbial community consisting mainly of Actinobacteria, Firmicutes and Proteobacteria. Elimination of the ocular commensal bacteria by oral broad-spectrum antibiotics or topical fluoroquinolone significantly suppressed corneal inflammation and neovascularization. Disease amelioration was associated with reduced numbers of CD11b+Ly6C+ and CD11b+Ly6G+ myeloid cells, not Foxp3+ regulatory T cells, in the spleen, blood, and draining lymph nodes. Therapeutic concentrations of fluoroquinolone, however, did not directly affect immune cells or vascular endothelial cells. In addition, data from a clinical study showed that antibiotic treatment in combination with corticosteroids, as compared with corticosteroid monotherapy, induced faster remission of corneal inflammation and new vessels in pediatric patients with non-infectious marginal keratitis. Altogether, our findings demonstrate a pathogenic role of ocular microbiota in non-infectious inflammatory disorders leading to sight-threatening corneal neovascularization, and suggest a therapeutic potential of targeting commensal microbes in treating ocular inflammation.


Subject(s)
Corneal Neovascularization , Keratitis , Microbiota , Mice , Animals , Corneal Neovascularization/drug therapy , Corneal Neovascularization/etiology , Corneal Neovascularization/pathology , Endothelial Cells , Keratitis/drug therapy , Keratitis/complications , Neovascularization, Pathologic/complications , Neovascularization, Pathologic/pathology , Inflammation/pathology , Cornea/pathology , Fluoroquinolones/therapeutic use
16.
Hum Exp Toxicol ; 41: 9603271221084674, 2022.
Article in English | MEDLINE | ID: mdl-35465742

ABSTRACT

PURPOSE: To investigate the effects of subconjunctival bevacizumab, ranibizumab, and aflibercept in an experimental corneal neovascularization model. MATERIALS AND METHODS: The eyes of 24 rats were chemically cauterized and randomly divided into four groups: bevacizumab group (0.05 mL/1.25 mg bevacizumab), ranibizumab group (0.05 mL/0.5 mg ranibizumab), aflibercept group (0.05 mL/1.25 mg aflibercept), and control group (0.05 mL saline solution). Plasma vascular endothelial growth factor (VEGF) levels were among the major measurement outcomes to assess corneal neovascularization. The collected plasmas were analyzed using the SIGMA RAB0511 Rat VEGF Elisa kit. The PCR technique and VEGF amplification procedures were used for molecular analysis. Each cornea was removed and histologically examined on day 21. Corneal images were evaluated by image analyzer software. RESULTS: In the post-injection period, the number of major corneal arteries decreased significantly in the injection groups when compared to the control group (p = 0.037), but no statistically significant differences were noted among the injection groups (p > 0.05). The aflibercept group had the lowest area of neovascularization. Immunohistochemical staining revealed substantially lower VEGF percentages in neovascularized arteries of the injection groups than the control group (p = 0.015). In TUNEL staining, the mean TUNEL value (number/1hpf) was substantially greater in the control group than in the injection groups, but the mean TUNEL values were similar between the injection groups (p = 0.019, p > 0.05, respectively). No statistically significant differences were observed between the groups in terms of corneal surface area with increased cellularity, edema, and inflammation (p = 0.263). The mean plasma VEGF concentration in the control group was statistically greater than those in the injection groups (p = 0.001). CONCLUSION: Subconjunctival bevacizumab, ranibizumab, and aflibercept crossed the blood and seemed to be effective in inhibiting corneal neovascularization without causing epitheliopathy in an experimental rat model compared to the controls. However, no significant results were noted between these three anti-VEGF molecules.


Subject(s)
Corneal Neovascularization , Ranibizumab , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Animals , Bevacizumab/pharmacology , Bevacizumab/therapeutic use , Corneal Neovascularization/drug therapy , Corneal Neovascularization/metabolism , Corneal Neovascularization/pathology , Disease Models, Animal , Ranibizumab/pharmacology , Ranibizumab/therapeutic use , Rats , Receptors, Vascular Endothelial Growth Factor , Recombinant Fusion Proteins , Vascular Endothelial Growth Factor A/metabolism
17.
Cornea ; 41(6): 722-728, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-34116542

ABSTRACT

PURPOSE: To describe the histopathological characteristics of limbal stem cell deficiency (LSCD) due to chronic vernal keratoconjunctivitis (VKC). METHODS: This retrospective study included 14 eyes of 13 patients who underwent simple limbal epithelial transplantation for total LSCD from 2017 to 2018. The histological characteristics of the excised fibrovascular pannus were compared between 2 groups of 7 eyes, each with LSCD due to VKC and chemical burns (CB). Histological characteristics and type of inflammation were studied using special stains and immunohistochemistry. Fisher exact test was used to detect the statistical significance of the histological differences between both groups. RESULTS: Epithelial hypertrophy, epithelial downgrowth, and eosinophilic infiltration were noted in all eyes in the VKC group (7/7, 100%). Epithelial hypertrophy was noted in 3 of the 7 (42.8%) eyes in the CB group, whereas epithelial downgrowth and eosinophilic infiltrates were absent. The average chronic inflammatory score of the pannus (5.28) was higher in VKC than in CB (3.85; P = 0.1080). The presence of goblet cells was higher in the CB group (5/7, 1.4%) than in the VKC group (3/4, 2.8%), although not statistically significant. Other histological differences between the groups were not statistically significant. CONCLUSIONS: The histopathological features of LSCD in VKC reveal some distinctive characteristics. These include the presence of epithelial downgrowth, eosinophilic infiltration, and epithelial solid and cystic implants. Although this information may be used to establish the diagnostic criteria for VKC as the cause of LSCD, further studies are needed to elucidate the reasons behind these unique findings.


Subject(s)
Burns, Chemical , Conjunctivitis, Allergic , Corneal Diseases , Corneal Neovascularization , Graft vs Host Disease , Limbus Corneae , Scleral Diseases , Burns, Chemical/pathology , Conjunctivitis, Allergic/complications , Conjunctivitis, Allergic/diagnosis , Corneal Diseases/diagnosis , Corneal Neovascularization/pathology , Graft vs Host Disease/pathology , Humans , Inflammation/pathology , Limbus Corneae/pathology , Retrospective Studies , Scleral Diseases/pathology , Stem Cells/pathology
18.
Drug Deliv ; 29(1): 18-30, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34962228

ABSTRACT

Corneal neovascularization is a serious corneal pathological change caused by various factors. The drug delivery system is of great significance for the effective treatment of corneal neovascularization. Herein, we developed and characterized a monolith/hydrogel composite as the triamcinolone acetonide (TA) carrier for curing corneal neovascularization. The composite was prepared by photo-initiated free radical polymerization of multi-methacrylate substituted dodecamine organic molecular cage and post-modified by the sequential photo-initiated free radical polymerization of acrylated gelatin. The globular morphology and structural property of as-prepared composites were evaluated by scanning electron microscopy, Fourier-transform infrared spectroscopy and solid-state cross polarization magic angle spinning carbon-13 nuclear magnetic resonance. Then swelling ratio and the TA loading capacity were investigated then. Compared with gelatin hydrogel, the composites exhibited a decreased swelling ratio and an improved loading capacity. With good biocompatibility, the composite can sustainedly release TA for up to 28 days, and effectively inhibit corneal neovascularization with an alkali burn-induced corneal neovascularization model. Additionally, tandem mass tags-labeled quantitative proteomics were performed to identify differentially expressed proteins between vascularized and devascularized corneas. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that the inhibition process could be primarily linked to the fibrinolytic system. These results demonstrated the potential of monolith/hydrogel composites as delivery systems in the therapy for biomedical diseases.


Subject(s)
Corneal Neovascularization/pathology , Drug Carriers/chemistry , Hydrogels/chemistry , Triamcinolone Acetonide/administration & dosage , Triamcinolone Acetonide/pharmacology , Animals , Cell Line , Cornea , Delayed-Action Preparations , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Liberation , Drug Stability , Humans , Male , Mice , Mice, Inbred BALB C
19.
Drug Deliv ; 29(1): 111-127, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34964414

ABSTRACT

Naringenin, a flavonoid, possesses antiangiogenic potential and inhibits corneal neovascularization (CNV); however, its therapeutic use is restricted due to poor solubility and limited bioavailability. In this study, we developed a naringenin microemulsion (NAR-ME) for inhibiting CNV. NAR-ME formulation was composed of triacetin (oil phase), Cremophor RH40 (CRH40), PEG400, and water, its droplet size was 13.22 ± 0.13 nm with a narrow size distribution (0.112 ± 0.0014). The results demonstrated that NAR-ME released higher and permeated more drug than NAR suspension (NAR-Susp) in in vitro drug release and ex vivo corneal permeation study. Human corneal epithelial cells (HCECs) toxicity study showed no toxicity with NAR-ME, which is consistent with the result of ocular irritation study. NAR-ME had high bioavailability 1.45-fold, 2.15-fold, and 1.35-fold higher than NAR-Susp in the cornea, conjunctiva, and aqueous humor, respectively. Moreover, NAR-ME (0.5% NAR) presented efficacy comparable to that of dexamethasone (0.025%) in the inhibition of CNV in mice CNV model induced by alkali burning, resulting from the attenuation of corneal vascular endothelial growth factor (VEGF) and matrix metalloproteinase (MMP-14) expression. In conclusion, the optimized NAR-ME formulation demonstrated excellent physicochemical properties and good tolerance, enhanced ocular bioavailability and corneal permeability. This formulation is promising, safe, and effective for the treatment of CNV.


Subject(s)
Corneal Neovascularization/pathology , Drug Carriers/chemistry , Emulsions/chemistry , Flavanones/pharmacology , Animals , Cell Line , Cell Survival , Chemistry, Pharmaceutical , Cornea/metabolism , Disease Models, Animal , Drug Liberation , Drug Stability , Flavanones/administration & dosage , Flavanones/adverse effects , Humans , Hydrogen-Ion Concentration , Male , Matrix Metalloproteinase 14/drug effects , Mice , Mice, Inbred BALB C , Ophthalmic Solutions , Particle Size , Rabbits , Surface Properties , Vascular Endothelial Growth Factor A/drug effects
20.
Arch Razi Inst ; 77(5): 1715-1721, 2022 10.
Article in English | MEDLINE | ID: mdl-37123111

ABSTRACT

The cornea, the transparent part of the eye, performs a significant function in eyesight by refracting the light to focus a visual image. Since the cornea is indispensable for vision, corneal inflammation may induce visual disturbance and blindness. Several investigations have reported that various corneal inflammatory diseases cause visual impairment and chronic inflammation of the cornea, which can lead to blindness. The present study aimed to assess the effect of adipose-derived mesenchymal stem cells (ADMSCs) on corneal healing after alkali injuries. Corneal alkali injuries were induced in the eyes of 20 rabbits. The MSC group (n=10) was treated with subconjunctival injections, while the control group (n=10) was left without any treatment. Rabbits underwent slit-lamp examination and photography and were evaluated for corneal neovascularization. Based on the histological evaluation, the eyes treated with MSCs showed better recovery. Furthermore, the MSC and control groups were significantly different in the degree of corneal neovascularization and re-epithelialization, as well as the elevation of the neovascular tissue at two and four weeks post-surgery.


Subject(s)
Burns, Chemical , Corneal Neovascularization , Mesenchymal Stem Cells , Animals , Rabbits , Alkalies/adverse effects , Blindness , Burns, Chemical/drug therapy , Burns, Chemical/pathology , Corneal Neovascularization/drug therapy , Corneal Neovascularization/pathology , Inflammation , Mesenchymal Stem Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...